What is ‘Internet Of Things’ (IOT)?

Bouzouitina Hamdi
18 min readAug 23, 2020

--

Definition Of Internet Of Things

The Internet of Things (IoT) is more than a buzzword; it is a system that is influencing how humans interact with technology, and how human beings behave. The meaning of IoT is connecting systems and devices that, until now, haven’t been connected. In other words, IoT is bestowing digital intelligence on otherwise dumb things. With an IoT smart home security system, a homeowner can lock or unlock their front door from a phone, adjust their home’s temperature or operate a security camera to see who is knocking at their door. Today, IoT applications in Business can be found everywhere. Smart cars inform humans of the fastest or shortest route based on traffic and adjust driving based on weather conditions. The human-machine interface is rapidly changing, thanks in large part to the Internet of Things. IoT is a vast network of sensors and systems that include everything from smartwatches and smartphones to smart cars, bar-codes on boxes and heating and air conditioning units. But, what does the Internet of Things (IoT) mean?

Overview:

IoT systems allow users to achieve deeper automation, analysis, and integration within a system. They improve the reach of these areas and their accuracy. IoT utilizes existing and emerging technology for sensing, networking, and robotics.

IoT exploits recent advances in software, falling hardware prices, and modern attitudes towards technology. Its new and advanced elements bring major changes in the delivery of products, goods, and services; and the social, economic, and political impact of those changes.

How does the IoT work?

The “things” that make up the IoT can be anything from a wearable fitness trackers to an autonomous vehicle. No matter what function they serve for users, these devices must have the following components for them to properly operate as parts of their respective IoT systems.

Sensors. Data is first collected from the environment for the IoT system to begin processing. It is collected by sensors in devices that can measure observable occurrences or changes in the environment. The kind of data being measured by the device depends on its function: It can be a person’s pulse in the case of a fitness tracker or the distance of the nearest object in that of an autonomous vehicle.

Connection and identification. The data must be communicated from the device to the rest of the IoT system, be it to a computer or to another device. And for this communication to have any meaning, a device must have a unique identifiable presence on the internet, accomplished through its own IP address.

Actuators. Most IoT devices are capable of doing their primary functions without physical interaction with their users. IoT devices should be able to take action based on data from their sensors and the subsequent feedback from the network. A smart lightbulb, for example, can turn on upon the command of its user, even when the user is miles away. In the same manner, a valve in a smart factory can automatically open or close according to data gathered by its sensors along the production line.

Even though the devices are usually built with automation in mind, other technologies must be in place for IoT systems to work. Completing the links of how IoT systems process data are the following components.

IoT gateway. The IoT gateway acts as a bridge for the different devices’ data to reach the cloud. It also helps in translating the different protocols of the various IoT devices into just one standard protocol and in filtering out unnecessary data gathered by the devices.

The cloud. The cloud is where all the data from the different devices is gathered and where software can reach this data for processing. Because most of data processing happens in the cloud, it lessens the burden on individual devices.

User interface. The user interface communicates to the users the data gathered by the devices and allows the users to make the necessary commands to be executed by the devices.

The Internet Architecture Board released a guiding document that outlines the four communication channels used by the IoT. The four models also demonstrate how the connectivity of IoT devices helps extend the value of each device and adds quality to the overall user experience:

Device-to-Device. This model represents how two or more devices connect and communicate directly with one another. Communication between devices is usually achieved through protocols such as Bluetooth, Z-Wave and Zigbee. This model is often found in in wearables and in home automation devices, where small packets of data are communicated from one device to another, as with a door lock to a lightbulb.

Device-to-Cloud. Many IoT devices connect to the cloud, often with the use of wired Ethernet or Wi-Fi. Connecting to the cloud allows users and related applications to access the devices, making it possible to course through commands remotely as well as push necessary updates to the device software. Through this connection, the devices can also collect user data for the improvement of their service providers.

Device-to-Gateway. Before connecting to the cloud, IoT devices can communicate first with an intermediary gateway device. The gateway can translate protocols and add an additional layer of security for the entire IoT system. In the case of a smart home, for example, all smart devices can be connected to a hub (the gateway) that helps the different devices to work together despite having different connection protocols.

Back-End Data-Sharing. An extension of the device-to-cloud model, this model allows users to gain access to and analyze a collection of data from different smart devices. A company, for instance, can use this model to access information from all of the devices working inside the company building as organized together in the cloud. This model also helps lessen issues with data portability.

What are the applications of the IoT?

Just as the internet at large affects a broad spectrum of users, so does the IoT. Depending on the scale of connectivity and the number of devices involved, the IoT can have significant and specific applications, be they for a single user or for an entire city. Common applications of the IoT include the following.

People and homes. People make direct use of IoT devices through technology that can be worn, such as smartwatches and fitness trackers, and devices that help make receiving and collecting information possible in real time. Applied to households, IoT devices can be used for a more connected, energy-efficient, and conveniently run home. Different aspects of a connected home can also be remotely accessed and controlled by home owners through a computer or a handheld smart device.

Automobiles. Sensors within a moving vehicle make it possible to collect real-time data about the vehicle and its surroundings. Autonomous vehicles use different sensors in combination with advanced control systems to assess their environments and consequently drive themselves.

Factories. With the application of IoT in factories, manufacturers can automate repetitive tasks as well as access information on any part of the entire manufacturing process. Information provided by sensors on factory machineries can help in devising ways to make the entire production line more efficient and less accident-prone.

Businesses. On a larger scale, with the adoption of IoT technologies, businesses can be more cost-effective, efficient, and productive. For example, office buildings can be fitted with sensors that can monitor elevator traffic or overall energy consumption. Different industries naturally have different applications of the IoT: In the healthcare industry, IoT devices may be used to gain instant and accurate updates about the condition of patients, while in the retail industry, IoT devices may be deployed to help shoppers locate products and to monitor inventory.

Cities. The combined uses of different IoT devices can cover urban and public areas. IoT devices can gather data from and affect its environment to help manage the various aspects of city governance, such as traffic control, resource management, and public safety.

What are the current issues with the IoT?

The IoT is a relatively new, developing technology. As such, it’s subject to certain significant issues, especially with more devices predicted to go online in the coming years. The following are several aspects where the IoT continues to face some issues.

Standards and Regulations

While it broadens the scope of applications, the growing number of connected devices makes the standardization and regulation of the IoT a complicated and nettlesome affair. Standardization and regulation issues can range from technical problems to legal matters. Fragmentation, for example, is a technical problem faced by users because of the lack in IoT standards. Different smart devices may use various wireless communication protocols like Blutooth, Wi-Fi, Zigbee, and 5G, hindering communication within IoT systems. On the other hand, lack of regulation highlights existing internet-related issues, as well as adding another layer of complexity to these issues. Determining accountability is one example: Should there be defects and breaches related to IoT device usage, lack of regulation leaves accountability difficult to determine. Standards and regulations affect the overall quality of services that IoT technologies render, and therefore concern all IoT stakeholders, be they individual users, device manufacturers, or organizations integrating the technologies into their processes.

Privacy

Privacy awareness has grown with the increase in diversity of shared personal information over the internet. The IoT further complicates this issue as it expands the types of data being recorded and shared over the internet. Since the IoT works better by getting as detailed a view of environments as possible, it presents a trade-off between user privacy and quality of service. Determining the points where data collection should be limited, or even stopping the collection of data altogether on account of user privacy concerns, is also difficult to achieve, especially with the automated nature of most IoT systems.

Security

Security concerns will always be present when handling of data and information is involved. The IoT adds its own security challenges with its access to a wide variety of personal information and its close integration into individual and organizational activities. These characteristics of the IoT make the technology a viable target for cybercriminals. In addition, any breach, attack, and vulnerability with a single IoT device or system weakens the overall security of the networks concerned.

Other security threats related to IoT technologies include the following.

  • The homogeneity of mass-produced smart devices means the proliferation of the same possible vulnerabilities.
  • The automation of IoT systems makes it more difficult to detect vulnerabilities and breaches because of the reduced need for human interference.
  • Environments in which IoT devices are deployed make these devices vulnerable to unforeseen physical threats where attackers may tamper with devices directly.
  • The interconnectivity of IoT systems makes every part of the system an avenue for data breaches and cyberattacks, which can spread to the rest of the affected networks.

Why IoT is important

The internet of things helps people live and work smarter, as well as gain complete control over their lives. In addition to offering smart devices to automate homes, IoT is essential to business. IoT provides businesses with a real-time look into how their systems really work, delivering insights into everything from the performance of machines to supply chain and logistics operations.

IoT enables companies to automate processes and reduce labor costs. It also cuts down on waste and improves service delivery, making it less expensive to manufacture and deliver goods, as well as offering transparency into customer transactions.

As such, IoT is one of the most important technologies of everyday life, and it will continue to pick up steam as more businesses realize the potential of connected devices to keep them competitive.

IoT benefits to organizations

The internet of things offers several benefits to organizations. Some benefits are industry-specific, and some are applicable across multiple industries. Some of the common benefits of IoT enable businesses to:

  • monitor their overall business processes;
  • improve the customer experience (CX);
  • save time and money;
  • enhance employee productivity;
  • integrate and adapt business models;
  • make better business decisions; and
  • generate more revenue.

IoT encourages companies to rethink the ways they approach their businesses and gives them the tools to improve their business strategies.

Generally, IoT is most abundant in manufacturing, transportation and utility organizations, making use of sensors and other IoT devices; however, it has also found use cases for organizations within the agriculture, infrastructure and home automation industries, leading some organizations toward digital transformation.

IoT can benefit farmers in agriculture by making their job easier. Sensors can collect data on rainfall, humidity, temperature and soil content, as well as other factors, that would help automate farming techniques.

The ability to monitor operations surrounding infrastructure is also a factor that IoT can help with. Sensors, for example, could be used to monitor events or changes within structural buildings, bridges and other infrastructure. This brings benefits with it, such as cost saving, saved time, quality-of-life workflow changes and paperless workflow.

A home automation business can utilize IoT to monitor and manipulate mechanical and electrical systems in a building. On a broader scale, smart cities can help citizens reduce waste and energy consumption.

IoT touches every industry, including businesses within healthcare, finance, retail and manufacturing.

IoT − Advantages

Some of the advantages of IoT include the following:

  • Ability to access information from anywhere at any time on any device;
  • Improved communication between connected electronic devices;
  • Transferring data packets over a connected network saving time and money; and
  • Automating tasks helping to improve the quality of a business’s services and reducing the need for human intervention.
  • Improved Customer Engagement − Current analytics suffer from blind-spots and significant flaws in accuracy; and as noted, engagement remains passive. IoT completely transforms this to achieve richer and more effective engagement with audiences.
  • Technology Optimization − The same technologies and data which improve the customer experience also improve device use, and aid in more potent improvements to technology. IoT unlocks a world of critical functional and field data.
  • Reduced Waste − IoT makes areas of improvement clear. Current analytics give us superficial insight, but IoT provides real-world information leading to more effective management of resources.
  • Enhanced Data Collection − Modern data collection suffers from its limitations and its design for passive use. IoT breaks it out of those spaces, and places it exactly where humans really want to go to analyze our world. It allows an accurate picture of everything.

IoT − Disadvantages

  • Security − IoT creates an ecosystem of constantly connected devices communicating over networks. The system offers little control despite any security measures. This leaves users exposed to various kinds of attackers.
  • Privacy − The sophistication of IoT provides substantial personal data in extreme detail without the user’s active participation.
  • Complexity − Some find IoT systems complicated in terms of design, deployment, and maintenance given their use of multiple technologies and a large set of new enabling technologies.
  • Flexibility − Many are concerned about the flexibility of an IoT system to integrate easily with another. They worry about finding themselves with several conflicting or locked systems.
  • Compliance − IoT, like any other technology in the realm of business, must comply with regulations. Its complexity makes the issue of compliance seem incredibly challenging when many consider standard software compliance a battle.

Also some disadvantages of IoT include the following:

  • As the number of connected devices increases and more information is shared between devices, the potential that a hacker could steal confidential information also increases.
  • Enterprises may eventually have to deal with massive numbers maybe even millions of IoT devices, and collecting and managing the data from all those devices will be challenging.
  • If there’s a bug in the system, it’s likely that every connected device will become corrupted.
  • Since there’s no international standard of compatibility for IoT, it’s difficult for devices from different manufacturers to communicate with each other.

IoT standards and frameworks

There are several emerging IoT standards, including the following:

  • IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) is an open standard defined by the Internet Engineering Task Force (IETF). The 6LoWPAN standard enables any low-power radio to communicate to the internet, including 804.15.4, Bluetooth Low Energy (BLE) and Z-Wave (for home automation).
  • ZigBee is a low-power, low-data rate wireless network used mainly in industrial settings. ZigBee is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard. The ZigBee Alliance created Dotdot, the universal language for IoT that enables smart objects to work securely on any network and understand each other.
  • LiteOS is a Unix-like operating system (OS) for wireless sensor networks. LiteOS supports smartphones, wearables, intelligent manufacturing applications, smart homes and the internet of vehicles (IoV). The OS also serves as a smart device development platform.
  • OneM2M is a machine-to-machine service layer that can be embedded in software and hardware to connect devices. The global standardization body, OneM2M, was created to develop reusable standards to enable IoT applications across different verticals to communicate.
  • Data Distribution Service (DDS) was developed by the Object Management Group (OMG) and is an IoT standard for real-time, scalable and high-performance M2M communication.
  • Advanced Message Queuing Protocol (AMQP) is an open source published standard for asynchronous messaging by wire. AMQP enables encrypted and interoperable messaging between organizations and applications. The protocol is used in client-server messaging and in IoT device management.
  • Constrained Application Protocol (CoAP) is a protocol designed by the IETF that specifies how low-power, compute-constrained devices can operate in the internet of things.
  • Long Range Wide Area Network (LoRaWAN) is a protocol for WANs designed to support huge networks, such as smart cities, with millions of low-power devices.

IoT frameworks include the following:

  • Amazon Web Services (AWS) IoT is a cloud computing platform for IoT released by Amazon. This framework is designed to enable smart devices to easily connect and securely interact with the AWS cloud and other connected devices.
  • Arm Mbed IoT is a platform to develop apps for IoT based on Arm microcontrollers. The goal of the Arm Mbed IoT platform is to provide a scalable, connected and secure environment for IoT devices by integrating Mbed tools and services.
  • Microsoft’s Azure IoT Suite is a platform that consists of a set of services that enables users to interact with and receive data from their IoT devices, as well as perform various operations over data, such as multidimensional analysis, transformation and aggregation, and visualize those operations in a way that’s suitable for business.
  • Google’s Brillo/Weave is a platform for the rapid implementation of IoT applications. The platform consists of two main backbones: Brillo, an Android-based OS for the development of embedded low-power devices, and Weave, an IoT-oriented communication protocol that serves as the communication language between the device and the cloud.
  • Calvin is an open source IoT platform released by Ericsson designed for building and managing distributed applications that enable devices to talk to each other. Calvin includes a development framework for application developers, as well as a runtime environment for handling the running application.

Consumer and enterprise IoT applications

There are numerous real-world applications of the internet of things, ranging from consumer IoT and enterprise IoT to manufacturing and industrial IoT (IIoT). IoT applications span numerous verticals, including automotive, telecom and energy.

In the consumer segment, for example, smart homes that are equipped with smart thermostats, smart appliances and connected heating, lighting and electronic devices can be controlled remotely via computers and smartphones.

Wearable devices with sensors and software can collect and analyze user data, sending messages to other technologies about the users with the aim of making users’ lives easier and more comfortable. Wearable devices are also used for public safety, for example, improving first responders’ response times during emergencies by providing optimized routes to a location or by tracking construction workers’ or firefighters’ vital signs at life-threatening sites.

In healthcare, IoT offers many benefits, including the ability to monitor patients more closely using an analysis of the data that’s generated. Hospitals often use IoT systems to complete tasks such as inventory management for both pharmaceuticals and medical instruments.

Smart buildings can, for instance, reduce energy costs using sensors that detect how many occupants are in a room. The temperature can adjust automatically for example, turning the air conditioner on if sensors detect a conference room is full or turning the heat down if everyone in the office has gone home.

In agriculture, IoT-based smart farming systems can help monitor, for instance, light, temperature, humidity and soil moisture of crop fields using connected sensors. IoT is also instrumental in automating irrigation systems.

In a smart city, IoT sensors and deployments, such as smart streetlights and smart meters, can help alleviate traffic, conserve energy, monitor and address environmental concerns, and improve sanitation.

List Of Top IoT Devices Examples In 2020

Google Home Voice Controller

Google Home Voice Controller is a smart IoT device which allows the user to enjoy features like media, alarms, lights, thermostats, control the volume and much more functions just by their voice.

Cost: US $ 130

YouTube Link: Google Home Voice Controller

Top Features:

  • Google home allows a user to listen to media.
  • Let’s the user to control TV and speakers.
  • It is capable of managing timers and alarms.
  • It can remotely handle the volume and home lights as well.
  • It helps the user to plan their day and get things done automatically.

Company Website: Google Home Voice Controller

August Doorbell Cam

August Doorbell Cam is an effective IoT innovation. August Doorbell Cam allows you to answer your door from anywhere or remote location. It constantly checks your doors and also captures motion changes in your doorstep.

Cost: US $ 199

YouTube Link: August Doorbell Cam

Top Features:

  • Doorbell Cam pairs with all August Smart Locks to easily let guests into your home.
  • The integrated floodlight delivers clear, full-color HD video even full-color.
  • It constantly monitors your doorstep and will click the moments leading up to a motion alert.
  • Free 24 hour video recording.
  • It comes with a speedy and hassle-free installation process.

Kuri Mobile Robot

Kuri is the first sort of home robot and most popular too. It is specifically designed for entertainment. Kuri interacts with the users and captures moments all around the house daily.

Cost: US $ 700

YouTube Link: Kuri Mobile Robot

Top Features:

  • Kuri has capacitive touch sensors and HD camera.
  • It is integrated with gestural mechanics and microphones.
  • It has heart light and speakers.
  • It includes integrated mapping sensors and drives system.
  • It has a good processor and smooth charging pad.

August Smart Lock

August Smart Lock has proven to be a reliable security IoT device. It allows the user to manage their doors from any location hassle-free. It helps the user to keep thieves away and family in your home.

Cost: US $ 220

YouTube Link: August Smart Lock

Top Features:

  • Allows the user to know about each and every person coming and going into your home.
  • Provides unlimited digital keys and no fear of stolen key.
  • It gives the status updates of your door as it is properly closed or not.
  • It has a good auto-unlock feature and as soon as the user arrives near the door it opens automatically.
  • Easy installation and is compatible with most standard single cylinder deadbolts.

Footbot Air Quality Monitor

Foobot is a reliable IoT device which is helpful in measuring indoor pollution and leads to improved air quality in houses, workplace, and indoor public spaces. It often gives accurate results.

Cost: US $ 199

YouTube Link: Footbot Air Quality Monitor

Top Features:

  • It cleans the air pollution.
  • Keeps the humidity and temperature levels in check.
  • Helps to develop more focus and energy by breathing fresh air.
  • Supports to increase the lifespan of the users.
  • It has a very fast and simple installation process.

IoT evolution: Where does the Internet of Things go next?

As the price of sensors and communications continue to drop, it becomes cost-effective to add more devices to the IoT — even if in some cases there’s little obvious benefit to consumers. Deployments are at an early stage; most companies that are engaging with the IoT are at the trial stage right now, largely because the necessary technology — sensor technology, 5G and machine-learning powered analytics — are still themselves at a reasonably early stage of development. There are many competing platforms and standards and many different vendors, from device makers to software companies to network operators, want a slice of the pie. It’s still not clear which of those will win out. But without standards, and with security an ongoing issue, we are likely to see some more big IoT security mishaps in the next few years.

As the number of connected devices continues to rise, our living and working environments will become filled with smart products — assuming we are willing to accept the security and privacy trade-offs. Some will welcome the new era of smart things. Others will pine for the days when a chair was simply a chair.

Comfort

The growth of IoT normalizes it. Users become comfortable with what they perceive as safe technology. IoT also lacks the transparency that warns users in traditional connected systems; consequently, many act without any consideration for the potential consequences.

That’s it i hope that it was clear and helpful. What do you think? Tell me in the comments below.

Here are some resources that helped me to write this blog you should take a look if you are interested in IOF:

--

--

No responses yet